979 research outputs found

    Assessing geomorphosites used for rock climbing : the example of Monteleone Rocca Doria (Sardinia, Italy)

    Get PDF
    Abstract. Within the framework of geomorphosite assessment with reference to tourism potential, a new field of research has opened up focusing on sites used for outdoor activities, like free climbing. This line of research in particular focuses on the suitability of geological and geomorphological characteristics of a specific site for a particular sport. Concentrating on geomorphological hazard, rock quality, tourism capacity and site vulnerability, a method of assessment was designed and tested on a number of important Itahan climbing sites. Using the results of the Monteleone Rocca Dona (Sardinia, Italy), the article presents the proposed approach of assessment. Although the site in question is recognised for its «scientific», «aesthetic» and «cultural value», it has drawn attention for its attractiveness for rock climbers in particular. Thus, the aim of the assessment was to support management of the site by proposing options for utüisation that are sensitive to both the needs of the climbers and the environment in which the site is embedded. In particular, attention was given to potential geomorphologically-related risks for climbers, the impacts linked to human presence and the specific characteristics of the geomorphosite

    High Performances Corrugated Feed Horns for Space Applications at Millimetre Wavelengths

    Full text link
    We report on the design, fabrication and testing of a set of high performance corrugated feed horns at 30 GHz, 70 GHz and 100 GHz, built as advanced prototypes for the Low Frequency Instrument (LFI) of the ESA Planck mission. The electromagnetic designs include linear (100 GHz) and dual shaped (30 and 70 GHz) profiles. Fabrication has been achieved by direct machining at 30 GHz, and by electro-formation at higher frequencies. The measured performances on side lobes and return loss meet the stringent Planck requirements over the large (20%) instrument bandwidth. Moreover, the advantage in terms of main lobe shape and side lobes levels of the dual profiled designs has been demonstrated.Comment: 16 pages, 7 figures, accepted for publication in Experimental Astronom

    The sub-millimetre evolution of V4334 Sgr (Sakurai's Object)

    Full text link
    We report the results of monitoring of V4334 Sgr (Sakurai's Object) at 450 microns and 850 microns with SCUBA on the James Clerk Maxwell Telescope. The flux density at both wavelengths has increased dramatically since 2001, and is consistent with continued cooling of the dust shell in which Sakurai's Object is still enshrouded, and which still dominates the near-infrared emission. Assuming that the dust shell is optically thin at sub-millimetre wavelengths and optically thick in the near-infrared, the sub-millimetre data imply a mass-loss rate during 2003 of ~3.4(+/0.2)E-5 for a gas-to-dust ratio of 75. This is consistent with the evidence from 1-5micron observations that the mass-loss is steadily increasing.Comment: 5 pages, 4 eps figures, accepted for publication in MNRA

    Applied Cyberpsychology: Military and Defence Applications

    Get PDF
    Virtual environments are synthetic computer simulations that represent activities at a high degree of realism. Virtual environments have numerous applications for military and defence purposes, ranging from allowing personnel to experience realistic, high-pressure situations with a sense of presence, but in the absence of real world risk, to modelling threats to national and international infrastructure to improve resilience. Emerging opportunities also exist for communication and intelligence gathering, exploring on-line social cognition and group behaviour, and understanding how to mitigate the negative effects of combat-related stress disorders, for example. In this chapter we introduce psychological theory and contemporary cyberpsychology research, and offer an albeit very brief introduction to the rapidly developing application of technology to better understand human behaviour and facilitate performance for military and defence purposes

    A Corona Australis cloud filament seen in NIR scattered light II: Comparison with sub-millimeter data

    Full text link
    We study a northern part of the Corona Australis molecular cloud that consists of a filament and a dense sub-millimetre core inside the filament. Our aim is to measure dust temperature and sub-mm emissivity within the region. We also look for confirmation that near-infrared (NIR) surface brightness can be used to study the structure of even very dense clouds. We extend our previous NIR mapping south of the filament. The dust colour temperatures are estimated using Spitzer 160um and APEX/Laboca 870um maps. The column densities derived based on the reddening of background stars, NIR surface brightness, and thermal sub-mm dust emission are compared. A three dimensional toy model of the filament is used to study the effect of anisotropic illumination on near-infrared surface brightness and the reliability of dust temperature determination. Relative to visual extinction, the estimated emissivity at 870um is kappa(870) = (1.3 +- 0.4) x 10^{-5} 1/mag. This is similar to the values found in diffuse medium. A significant increase in the sub-millimetre emissivity seems to be excluded. In spite of saturation, NIR surface brightness was able to accurately pinpoint, and better than measurements of the colour excesses of background stars, the exact location of the column density maximum. Both near- and far-infrared data show that the intensity of the radiation field is higher south of the filament.Comment: 9 pages, 9 figures, accepted to A&

    The linearity response of the Planck-LFI flight model receivers

    Get PDF
    In this paper we discuss the linearity response of the Planck-LFI receivers, with particular reference to signal compression measured on the 30 and 44 GHz channels. In the article we discuss the various sources of compression and present a model that accurately describes data measured during tests performed with individual radiomeric chains. After discussing test results we present the best parameter set representing the receiver response and discuss the impact of non linearity on in-flight calibration, which is shown to be negligible.Comment: this paper is part of the Prelaunch status LFI papers published on JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/jinst; This is an author-created, un-copyedited version of an article accepted for publication in JINST. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The definitive publisher authenticated version is available online at 10.1088/1748-0221/4/12/T12011

    Far-Infrared to Millimeter Astrophysical Dust Emission. II: Comparison of the Two-Level Systems (TLS) model with Astronomical Data

    Full text link
    In a previous paper we proposed a new model for the emission by amorphous astronomical dust grains, based on solid-state physics. The model uses a description of the Disordered Charge Distribution (DCD) combined with the presence of Two-Level Systems (TLS) defects in the amorphous solid composing the grains. The goal of this paper is to confront this new model to astronomical observations of different Galactic environments in the FIR/submm, in order to derive a set of canonical model parameters to be used as a Galactic reference to be compared to in future Galactic and extragalactic studies. We confront the TLS model with existing astronomical data. We consider the average emission spectrum at high latitudes in our Galaxy as measured with FIRAS and WMAP, as well as the emission from Galactic compact sources observed with Archeops, for which an inverse relationship between the dust temperature and the emissivity spectral index has been evidenced. We show that, unlike models previously proposed which often invoke two dust components at different temperatures, the TLS model successfully reproduces both the shape of the Galactic SED and its evolution with temperature as observed in the Archeops data. The best TLS model parameters indicate a charge coherence length of \simeq 13 nm and other model parameters in broad agreement with expectations from laboratory studies of dust analogs. We conclude that the millimeter excess emission, which is often attributed to the presence of very cold dust in the diffuse ISM, is likely caused solely by TLS emission in disordered amorphous dust grains. We discuss the implications of the new model, in terms of mass determinations from millimeter continuum observations and the expected variations of the emissivity spectral index with wavelength and dust temperature. The implications for the analysis of the Herschel and Planck satellite data are discussed.Comment: Accepted for publication in A&A (16 pages, 9 figures, 6 tables
    • …
    corecore